Recherchiere Firmen­bekanntmachungen und finanzielle Kennzahlen

UK-Förderung (1.114.623 £): Eine bioinspirierte Plattformtechnologie für funktionale Farben und Beschichtungen der nächsten Generation Ukri01.11.2020 Forschung und Innovation im Vereinigten Königreich, Großbritannien

Auf einen Blick

Text

Eine bioinspirierte Plattformtechnologie für funktionale Farben und Beschichtungen der nächsten Generation

Zusammenfassung The need for more sustainable paints and coatings, which do not release harmful chemicals into the environment when drying, has driven major recent advances in waterborne products. However, a new manufacturing approach is now crucial to produce the next generation of waterborne paints and coatings to help tackle pressing economic and societal challenges, such as healthcare associated infections and the need to increase our production of renewable energies. The accumulation of pathogenic bacteria on surfaces is one of the leading causes of healthcare associated infections, which killed over 5,500 NHS patients in 2017 and cost the NHS more than £2.3 billion per year. New and more effective antibacterial coatings are therefore urgently needed to reduce bacterial accumulation on clinical surfaces and minimize the occurrence of healthcare-associated infections. My platform technology will further be transformative for the renewable energy sector. Although we can fabricate devices which convert over 45% of sunlight into electricity, most solar panels are located in arid or semi-arid regions, where their efficiency can be reduced by up to 30% because of dust and pollen accumulated on the panels. Currently, the anti-soiling coatings that keep solar panels clean are based on fluorinated components that have a have a long-lasting persistence in the environment and high tendency to accumulate in animals and humans. My proposed approach to fabricate anti-soiling coatings will reduce our dependency on fluorinated materials, increasing sustainability and reducing costs. This Fellowship aims to overcome these challenges by developing a bioinspired platform technology that will act as a springboard for the next generation of sustainable functional paints and coatings. As the base of the technology, structures found in the skin of insects that survive floods in the rainforest will be mimicked using a self-assembly process where the different building blocks order themselves during drying. These structures will provide self-cleaning properties to the coatings that are not based on the composition or chemistry of their ingredients (avoiding the need for fluorinated components) but on the surface geometry. This platform technology will then be adapted initially to add coating properties that will target the challenges of healthcare associated infections and solar panel efficiency reductions. To tackle healthcare associated infections, nanomaterials that kill bacteria, in the form of copper or zinc oxide nanoparticles, will be added to the coating formulation. The distribution of these nanomaterials will be optimized to locate them at the top surface of the coating, where they will be most effective as they will be in contact with adhering bacteria. These coatings will be tested in a real hospital environment, to quantify the reduction in bacterial growth when compared with a surface that has not been coated. To increase the efficiency of solar panels, nanomaterials that increase the resistance to wear and abrasion in arid climates will be added to the coating formulation. The composition of the coatings will be tuned to control their optical properties and minimize the adverse effects that sunlight reflection has on the efficiency of solar panels. The coatings will be tested in a real solar platform located in a desert, comparing the efficiency of a coated panel versus an uncoated one. My Fellowship will be transformative in its focus on reproducing the conditions that the paint industry uses when developing new products. In particular, the challenge of obtaining the same structures in a high viscosity/thickness paint, which is required to prevent paint sagging/dripping after application, will be addressed. This will be done in collaboration with three industrial paint partners, as well as preparing pilot scale paint formulations, to ensure a route towards innovation and product development.
Kategorie Fellowship
Referenz MR/T02061X/1
Status Active
Laufzeit von 01.11.2020
Laufzeit bis 31.10.2024
Fördersumme 1.114.623,00 £
Quelle https://gtr.ukri.org/projects?ref=MR%2FT02061X%2F1

Beteiligte Organisationen

Loughborough University

Die Bekanntmachung bezieht sich auf einen vergangenen Zeitpunkt, und spiegelt nicht notwendigerweise den heutigen Stand wider. Der aktuelle Stand wird auf folgender Seite wiedergegeben: Loughborough University, Loughborough, Großbritannien.

Creative Commons Lizenzvertrag Die Visualisierungen zu "Loughborough University - UK-Förderung (1.114.623 £): Eine bioinspirierte Plattformtechnologie für funktionale Farben und Beschichtungen der nächsten Generation" werden von North Data zur Weiterverwendung unter einer Creative Commons Lizenz zur Verfügung gestellt.